Rank gain of Jacobians over number field extensions with prescribed Galois groups

نویسندگان

چکیده

Abstract We investigate the rank gain of elliptic curves, and more generally, Jacobian varieties, over non‐Galois extensions whose Galois closure has a group permutation‐isomorphic to prescribed G (in short, “ ‐extensions”). In particular, for alternating groups (an infinite family of) projective linear , we show that most curves (for example) infinitely many ‐extensions, conditional only on parity conjecture. More provide theoretical criterion, which allows deduce “many” conjecture existence geometric realizations with certain local properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONSTRUCTION OF MAXIMAL UNRAMIFIED p-EXTENSIONS WITH PRESCRIBED GALOIS GROUPS

For any number field F (not necessary of finite degree) and prime number p, let Lp(F ) denote the maximal unramified p-extension over F , and put G̃F (p) = Gal(Lp(F )/F ). Though the structure of G̃F (p) has been one of the most fascinating theme of number theory, our knowledge on it is not enough even at present: It had been a cerebrated open problem for a long time whether G̃F (p) can be infinit...

متن کامل

On Galois Groups of Abelian Extensions over Maximal Cyclotomic Fields

Let k0 be a finite algebraic number field in a fixed algebraic closure Ω and ζn denote a primitive n-th root of unity ( n ≥ 1). Let k∞ be the maximal cyclotomic extension of k0, i.e. the field obtained by adjoining to k0 all ζn ( n = 1, 2, ...). Let M and L be the maximal abelian extension of k∞ and the maximal unramified abelian extension of k∞ respectively. The Galois groups Gal(M/k∞) and Gal...

متن کامل

Hyperelliptic Jacobians and Projective Linear Galois Groups

In [9] the author proved that in characteristic 0 the jacobian J(C) = J(Cf ) of a hyperelliptic curve C = Cf : y 2 = f(x) has only trivial endomorphisms over an algebraic closure Ka of the ground field K if the Galois group Gal(f) of the irreducible polynomial f ∈ K[x] is “very big”. Namely, if n = deg(f) ≥ 5 and Gal(f) is either the symmetric group Sn or the alternating group An then the ring ...

متن کامل

Galois Groups of Maximal ̂ -extensions

Let p be an odd prime and F a field of characteristic different from p containing a primitive p\h root of unity. Assume that the Galois group G of the maximal p-extension of F has a finite normal series with abelian factor groups. Then the commutator subgroup of G is abelian. Moreover, G has a normal abelian subgroup with pro-cyclic factor group. If, in addition, F contains a primitive p2th roo...

متن کامل

Galois Groups of Radical Extensions

Theorem 1.1 (Kummer theory). Let m ∈ Z>0, and suppose that the subgroup μm(K) = {ζ ∈ K∗ : ζ = 1} of K∗ has order m. Write K∗1/m for the subgroup {x ∈ K̄∗ : x ∈ K∗} of K̄∗. Then K(K∗1/m) is the maximal abelian extension of exponent dividing m of K inside K̄, and there is an isomorphism Gal(K(K∗1/m)/K) ∼ −→ Hom(K∗, μm(K)) that sends σ to the map sending α to σ(β)/β, where β ∈ K∗1/m satisfies β = α.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2023

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.202100125